Turán Problems for k-Geodetic Digraphs

نویسندگان

چکیده

Abstract A digraph G is k - geodetic if for any pair of (not necessarily distinct) vertices $$u,v \in V(G)$$ u , v ∈ V ( G ) there at most one walk length $$\le k$$ ≤ k from u to v in . In this paper, we determine the largest possible size a -geodetic with given order. We then consider more difficult problem strongly-connected order, solving $$k = 2$$ = 2 and giving construction which conjecture be extremal larger close some results on generalised Turán problems number directed cycles paths digraphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On k-geodetic digraphs with excess one

A k-geodetic digraph G is a digraph in which, for every pair of vertices u and v (not necessarily distinct), there is at most one walk of length ≤ k from u to v. If the diameter of G is k, we say that G is strongly geodetic. Let N(d, k) be the smallest possible order for a k-geodetic digraph of minimum out-degree d, then N(d, k) ≥ 1 + d+ d2 + . . .+ dk = M(d, k), where M(d, k) is the Moore boun...

متن کامل

Supersaturation For Ramsey-Turán Problems

For an l-graph G, the Turán number ex(n,G) is the maximum number of edges in an n-vertex l-graph H containing no copy of G. The limit π(G) = limn→∞ ex (n,G)/ ( n l ) is known to exist [8]. The Ramsey-Turán density ρ(G) is defined similarly to π(G) except that we restrict to only those H with independence number o(n). A result of Erdős and Sós [3] states that π(G) = ρ(G) as long as for every edg...

متن کامل

Turán Problems for Bipartite Graphs ∗

We consider an infinite version of the bipartite Turán problem. Let G be an infinite graph with V (G) = N, and let Gn be the n-vertex subgraph of G induced by the vertices {1, 2, . . . , n}. We show that if G is K2,t+1-free, then for infinitely many n, e(Gn) ≤ 0.471 √ tn3/2. Using the K2,t+1-free graphs constructed by Füredi, we construct an infinite K2,t+1-free graph with e(Gn) ≥ 0.23 √ tn3/2 ...

متن کامل

The Geodetic numbers of Graphs and Digraphs

For any two vertices u and v in a graph G (digraph D, respectively), a u − v geodesic is a shortest path between u and v (from u to v, respectively). Let I(u, v) denote the set of all vertices lying on a u− v geodesic. For a vertex subset S, let I(S) denote the union of all I(u, v) for u, v ∈ S. The geodetic number g(G) (g(D), respectively) of a graph G (digraph D, respectively) is the minimum ...

متن کامل

Rainbow Turán Problems

For a fixed graph H, we define the rainbow Turán number ex∗(n,H) to be the maximum number of edges in a graph on n vertices that has a proper edge-colouring with no rainbow H. Recall that the (ordinary) Turán number ex(n,H) is the maximum number of edges in a graph on n vertices that does not contain a copy of H. For any non-bipartite H we show that ex∗(n,H) = (1+o(1))ex(n,H), and if H is colou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2023

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-023-02619-x